0951-5240(95)00004—-6

Compurer Integrated Manufaciuring Systems Vol. 8. No. 2, pp. 105-115, 1995
Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

VUS1-5240/95 $10.00 + 0.00

The helical approach to software

design

A W S Ainger* with the support of F Schmid’

*Human Centred Systems Ltd, Beaumont, Burfield Road, Old Windsor, Berks SL4 2JP, UK
‘Advanced Railway Research Centre, University of Sheffield, Regent Court, Sheffield S1 4DA, UK

This paper is used to outline a relatively recent approach to the development of software
products. Practical experience of employing the traditional waterfall lifecycle model, the Spiral
Model and concurrent engineering approaches in both small and large (pan-European) software
projects provide the foundation on which to present, discuss and propose a new lifecycle model;
the Helical LifeCycle Approach. The authors of the paper distinguish between prototypes, and
model and postulate the need for the formalization of a new software engineering job role which

is focused around the Helical Project LifeCycle.

Keywords: software design, Helical Project LifeCycle

Background

In 1979 a report (Figure 1)' concluded that only 2% of
software supplied was usable as delivered, and a
massive 47% of software was delivered but never used.
These figures emanated from the US Department of
Defense some 14 years ago, so it could be assumed that
in the intervening years, with the advent of computer-
aided everything (CAx), things would have changed.
The situation has indeed changed, from the 2% success
rate in 1979 to, in 1991, a 99% failure rate! (Figure 2).
It is realized that the comparisons are not exactly like
with like; however, a general trend can be identified,
that of the generally poor performance, as far as the
user is concerned, of software systems.

This general failure to meet user needs first time
round accords with our own experience. Although the
success rate of our projects (within a multi-million
pound international organization) appeared to be
significantly higher than those experienced in the US,
the overall performance was still felt to be low. As a
result, an extensive internal survey of over 100 projects
over a 10 year period was undertaken. In the survey we
attempted to identify critical success factors within
software projects. Many parameters were monitored,
such as: hardware platform; software languages used;
size of the software team; qualification and experience
of the development team; overall cost of the project;
geographical position of the final installation; size of
the project, etc. No significant correlation between any
of these factors and the more successful projects were
identified.

During further analysis it was found, almost by
accident, that there was a small correlation between the
number of meetings held and successful projects. This
initially, appeared as a surprise, as it was commonly
understood that the fewer meetings there were the

better the project progress. However, on more detailed
analysis it was determined that it was not the number of
meetings that gave the highest correlation with success-
ful results, but the type of meetings, and who was
present at those meetings. Regardless of hardware or

2% of software

3% could be used
B3 used as delivered

after change:
19% used but
1 reworked or
E [iater abandoned

47% delivered
but never used

=1]

Figure 1 Only 2% of softwarc supplicd was usable as
delivered (1979)

i

j i

AP

il
'IIIIIIIlI!IIIIIIIIIIIlll!I!lIIH!llIIIIE!H!IE!: i
gttt T :

|| |l|l|'| |

l i rn. h ” ‘I
il 1, (e

sormuamn prveer | il liﬁ!iim!m|||nm|||||uuug!y

PROBLEMS

lLiow sy of large sysiews
Sinish on Nme. 1o budyor and
et user needs?

! L
et TR LKA
) O/ Lo

0}

Figure 2 Failure rate of 99% (1991)

Computer Integrated Manufacturing Systems Volume 8 Number 2 105

The helical approach to software design: A W S Ainger

software platforms, regardless of the qualifications of
the development team, and regardless of the cost of the fiatement of
project, it appeared that the most successful projects
had significantly more meetings (both formal and Specifcation
informal) with the users of the system than those that
did not. There was, however, another correlation that
was even higher than the user meetings. It was found Prototype
that failed projects followed more rigorously than —
others the waterfall project lifecycle (Figure 3). ete...

At that time (mid-1980s) it was something of a
revelation to find evidence that pointed towards the
demise of the waterfall project lifecycle. More recently, Figure 3 Traditional waterfall project lifecycle
however, there have been a number of papers” ™ that,
to quote Butler’, indicate that ‘too much order can
mean chaos’. Even so, the failure of the traditional
waterfall project lifecycle has not yet been widely
recognized. There would still appear to be many
prestigious comp'flmes‘and orgﬁamzatlons that adhere to traditional g.q::;mbn ” Deign ” Bu";::l{‘;mmm :J
the waterfall project lifecycle®. engineenng |2

It was in the early 1980s that work commenced on -l = - =
what is now termed the Helical Lifecycle Approach. ‘s;q:;::::
This is best explained by using the principles of
concurrent engineering. The initial work WIZIS corll)ducted

under a European Strategic Research and Development i
into Information Technology (ESPRIT) Project’. The

Project, entitled ‘Human-Centred CIM Systems’,
developed further Dr Cooley’s statement that ‘Human
Centred CIM (Computer Integrated Manufacture) is a
new approach to CIM, where the system is designed
around human beings and integrates human capabilities,
skills inventiveness, etc.” The £5.6 million project
involved six organizations from three FEuropean
countries, and is believed to be the first pan-European

project to research human centred CIM systems. g " €& How can you
: start to design a

‘bicycle’ before
you discover
that what you
really need is a
The benefits of concurrent engineering would appear to ar g

be obvious (Figure 4). Just by overlapping the tradi-
tional project development stages, (that is, require-
ments specification, design, build and implementa-
tion), significant time benefits would appear to accrued.
However, it is only when the detail is examined that the W >
impracticalities of this approach emerge (Figure 5). For
example, if the project team is half-way through
specifying a systems product, it would appear that the
design work, if started before the specification work is
complete, could be wasted, as one could ‘start to design
a car before discovering that what you really need is a '
bicycle’. e

A more practical approach to concurrent engineering
could be structured as in Figure 6, where an initial
global look at the specification is made prior to any
initial design work. Then, only after the final specifica-
tion work 1s completed, can the design work start again,
but in far more detail. It has been likened to ‘first
looking at a map of the terrain and then getting out the
mountain bike®. As we tend to view life sequentially,
particularly so in the field of systems design, a
sequential view of concurrent engineering can be made Figure 6 A practical approach to concurrent engineering?

Design
Specifications

time

Figure 4 The benefits of concurrent engineering

Concurrent engineering

| look ai a map
| of the terrain
1& then get the
I ‘Land Rover’
out 99

106 Computer Integrated Manufacturing Systems Volume 8 Number 2

(Figure 7). U we look at timeslices through the
overlapping traditional waterfall lifecycle method, we
find we have the apparcntly impossible task of: first
partially specitving the svstem. then finally specifying
the system whilst simultaneously partially designing it;
followed by finally designing it and partially simultan-

t
(N \
. !
specify 7 '
> |
1
ll
. . !
design |- I
I mE— e :
1
l‘ \
build .’ £ |
fime !
[}
implement
T Lol
specify - |[Pecy & | donign &}| buikd & {bplement| time
build build meat U

U A N —r

Figure 7 A ‘scquential’ view of concurrent engincering

The helical approach to software design: A W S Ainger

eously building it: followed by finally building it and
partially implementing it, etc!

In theory, this ‘saw tooth™ approach can be taken to
the limit (Figure 8). Here the overall time savings can
be enormous. There is, however. a problem. How does
one obtain, in practice, the benefits of this sequential
view of the concurrent engineering aspects when
applying the traditional waterfall lifecvcle approach?
An answer can bhe seen in Figure 9. a representation
based on a design helix.

In postulating an underlving sequential pattern in the
concurrent engineering approach. we have found a
practical solutions to the <oftware design problem
based on the production of a number of smodels. In the
traditional waterfall cycle. this equates tov the visualiza-
tion of the prototyvpe as a virtually complete entity I
we make models. and many of them. it i< possible to
achieve high levels of feedback early on the design
process, thereby ensuring the convergence ol views
hetween the users and the systeme designers. Tt s the
mcthod by which these multiple madels are produced
that has been termed the “helical approach™ (Figure 1)
Such visualizations of the potential functionality of the
product at the diffcrent stages of the development cycle
arc often described as ‘cardboard models™ in the sense

|
)
specify !
_ ;
/ B s :
design ey ":'Q) |
l
AR/ :
build Y |
!
) |/ -IA, I
implement Mg :
1
. |
: - . —
tHe HELIX time
ARSI

Figure 8 The limits of concurrent engincering

Figure 9 Outlinc of the helical project lifecyele design

Computer Integrated Manufacturing Systems Volume 8 Number 2 W07

The helical approach to software design: A W S Ainger

nteractive Mode

& WHERE i

HO will 1t
affect & WHAT{
will it do
START)

it

WHO uses it ‘g::::::
& WHEN -
I Storyboard
s
influences it

| '|l:b cenario Data Flow) |

r] Diagram Model :

WHO benefits ' 11! :

& WHY . 3
Model

Functional
Specification

Design
Specifications

Figure 10 The Helical project lifecycle design approach

of architectural models. They provide a realistic view of
the product at little cost.

For psychological reasons, it has proved useful, after
providing the final interactive ‘cardboard mode!’ (Figure
10), to take the model and put it in a form of words (a
process which can be likened to the creation of a
requirements specification). This is not a necessary step
as far as the method is concerned, however, we have
found that many organizations, or rather people within
those organizations, feel more comfortable with a
‘requirements specification’ as a document rather than
a disk containing ‘cardboard software’. A similar
approach could be taken with the functional specifica-
tion. This, also, is not strictly necessary, as all the
major functions will be represented and displayed in
the interactive cardboard model. However, we have
found that some of the more traditional
managers prefer the production of these paper-based
specifications.

Should it be necessary to write down the requirements
specification and the functional specification, it has
been found that, after the production of the various
Helical models, these two documents can be written
extremely quickly and effectively, as it is far easier to
write about something that can be seen (i.e. the
‘cardboard model’) than about something that cannot
be seen (i.e. as would normally be the case). After all,
a picture is said to be worth a thousand words.
Provided the senior managers are introduced to the
Helical method, the production of the systems specifica-
tion and the functional specification documents have
not proved necessary steps. What is necessary, however,
is a detailed design specification.

It has been found that the ‘cardboard software’
produced can represent an ideal constraint rather than
a realizable set of objectives. However, the risk of the
‘ideal’ solution being impractical, in software terms, is

108 Computer Integrated Manufacturing Systems Volume 8 Number 2

low, provided the system designer/model maker has
sufficient software experience and sufficient discussions
have occurred with the software authors. Itis, therefore,
for psychological reasons (comfort factor) that that
Helical approach is shown to feed directly into the
traditional waterfall lifecycle model. However, when
the Helical approach is understood, and with a certain
amount of practice, it is possible to use a ‘life-shaft’
inside the Helix and jump to the most appropriate
model that the solution seems to suggest, then move to
the interactive cardboard model, then straight to the
design specification or even prototype.

Models and the helical approach

The Helical approach is focused around the generation
of models. The quote the Oxford Dictionary (1990), a
model is ‘a representation of designed or actual object;
design or style to be followed; give shape to, form’.

The following sections outline the various ‘models’
used in the Helical approach and, where appropriate,
provides examples. When following the traditional
waterfall approach, most feedback to the design stages
occurs far too late. Real feedback generated by the
users appears when the first prototype of the system is
demonstrated. No matter how many specifications or
documents are generated, it is only during the latter
stages (i.e. the prototype stage) that real ‘communica-
tion’ takes place. The waterfall’s single most positive
aspect, feedback into the design specification by the
users when viewing the prototype, has been seized and
built upon in the Helical approach. The difference
between a model and a prototype must be stressed at
this juncture. In this context, models are used to
represent/visualize concept/design, whereas a proto-
type actually works (i.e. the prototype of the Concord
aeroplane actually flew at Mach 2).

In the Helical approach the generation of models
assists both the user and the systems designer to
communicate effectively. It is somewhat surprising to
find that the use of models (as opposed to prototypes)
is almost unheard of in the software field. However, in
every other engineering discipline the generation of
models can be a pre-requisite before the system/
product/artifact is built. For example, if we take an
aeronautical engineer or a shipbuilder or a civil
engineer, each will build, or have built, a ‘cardboard’
model of the project prior to the build stage. Tt is
almost certain that if one walks into an architect’s office
the first thing to be seen will be, under a glass dome, a
‘cardboard model’ of the latest mega project, a bridge,
a dam or a block of flats. This model is not expected to
work. The doors, windows and lifts in the model of the
block of flats are not expected to be functional. What is
expected is that the overall view, the general picture
that is given is as accurate as possible''.

It is relatively straightforward to conceive and build a
model, whether it be in cardboard or any other
material, of a block of flats. What is more problematic,
though, is the construction of a ‘cardboard model’ of a
proposed software product! However, just as one can
have a model of a block of flats made of cardboard or
other materials, it is also possible to have many models
of the proposed software system. It is only towards the
end of the model generation sequence that ‘cardboard
software’ is used. Many other model making ‘materials’
have to be employed prior to the cardboard software
stage.

The model making ‘materials’ of the Helix are not
new. Some of the materials have existed for many
years. The Helical Project Lifecycle Approach employs
and utilizes concepts and insights from other disciplines
to maximum benefit. The following sections give a brief
outline of each of the individual models that go to make
up the Helical Approach (Figure 10).

CATWOE model

The CATWOE Statement originates from the field of
‘soft’ systems theory. A version of it is used as the first
‘Model’ in the Helical approach and assists the users
and system designers to come to an agreed, but short,
definition (less than one page long!) of the system that
is being developed. This convergence of ideas at an
early stage of the project both intensifies discussion and
focuses, as far as is possible at this stage, the minds of
the people involved.

Checkland'" defined the acronym CATWOE, where
C stands for Customer or beneficiary, A = Actors in
the system, T = Transformation, W = World image,
O = Ownership, and E = Environmental constraints.
The inputs and outputs also have to be identified, but
the details of the CATWOE Statement can be read
elsewhere (see Checklands original series of papers).

At a NATO Conference'” a new acronym was
suggested. Rather than CATWOE, it might be more
appropriate to use COWPATES. It was felt that the
current CATWOE acronym lacks two issues:

The helical approach to software design: A W S Ainger

1. The purpose (P).
2. The softer issues (S).

At a number of project meetings subsequent to the
NATO conference, it became apparent that the
‘CATWOE Statements’ that were suggested almost
automatically included the purpose of the projection
the first sentence. The softer issues or people issues
were generally not mentioned. It is felt, therefore, that
the acronym COWPATES is a more useful word to
remember when using this particular model.

Scenario model

The next model on the Helix is the Scenario Model.
The scenario has been used widely and successfully in
the applied psychology field, and elsewhere, for many
years. In building the Helical Scenario Model, the
system designers and users, together, build a story/
scenario around the problem/solution space’. It has
been found that role playing the problem scenario can
be a very exciting and revealing exercise. Once the
problems have been identified, the solution role play
can commence. The solution role play is normally not
very stimulating as all matters should flow smoothly
and all transactions should be completed successfully.
However, the solution role play does focus, once again,
both in the system designer’s and user’s minds, a
mental image/model of the final system. For a partial
example see Figure 11'°. This example is taken from a
multi-million pound Pan-European development
project with partners in Italy, Portugal and the UK.

One-liner objectives model

When the mental models of both the designer and the
system user are closely aligned it will be possible to
write down the ‘One-Liner Objectives Model’. In this
task three aspects have to be considered:

1. Statement of a situation in which the future system is
to be used.

2. Statement of management’s expectations of the
system.

3. The system’s essential objectives.

These items are meant to be extremely brief. They
are not meant to be all encompassing. What is intended
is to fix, yet again, but in another way, the current state
of both the system developers’ and the users’ under-
standing of their mental models. There should be, in
general, no more than half a dozen or so principal
objectives, and both the system designers and users
should be able to agree, albeit in a general sense, on a
form of words. A partial example is given in Figure 12.

Scenario data flow diagram model

The scenario data flow diagram (SDFD) combines, in
the visual form, all the previous models (i.e. one-liner

*In one particular case in Italy, the solution scenario was only
resolved by the various members in the meeting role playing, not only
the users of the system but also the computer terminals themselves!

Computer Integrated Manufacturing Systems Volume 8 Number 2 109

The helical approach to software design: A W S Ainger

6 Qperating Scenarios

The Consomum }ms prcpared shorl written sales enquny scenanos th' bneﬂy desmbe

Consortium's attention on lhe. operauon of lhe f ;

Emstmg Pmducts

The characteristics of this scenario are : the Sales Group
enquiry for an existing product for which there wdl be's pr

routes, part programs, and set-up and run-time data. It wﬂl tfxerefore be bossxble for the _
Sales Group to establish if a requested delivery dale is possxble orto eslabhsh i reahsuc

dehvery dale usmg the sales enqmry handlmg DSS

Similar Products

This scenario is concerned with', . .-

Figure 11 Example scenario model

66

Statement of Objectives

1. Statement of the Situation in which the System is to Operate
The Sales DSS will be designed for a manufacturing environment characterised by

the following features :

a) Cellular manufacturing environment manned by the cell teams with other ‘natural
groups’ located in other pants of the factory (e.g. the sales team)
b) The cell and sales teams are involve in continuing improvement activities.

¢) Manufacturing data are inaccurate and . . .

2. Essential Objectives
The Sales DSS should :

a) Allow more accurate delivery date to be given to the customer

b) Allow members of the teams to monitor trends in data accuracy and to identify
causes of any improvement or deterioration.

¢) Provide means of identifying and ignoring extreme values (rouge data) that are
likely to distort the data analysis . . .

99

Figure 12 Example one-liner objectives

objectives model, scenario model and the CATWOE
model). The SDFD is not a strictly data flow diagram,
but they are built up of the same four symbols (Figure
13). In traditional data flow diagrams the time element
is not well represented. In the scenario data flow
diagrams the time element is represented by displaying
a sequence of the diagrams one after the other, building
up to a full scenario data flow diagram.

The scenario data flow diagrams (SDFD) are con-
structed by considering, in turn, each of the scenario
models (Figures 14a, b). Each of the scenarios should
be discussed in some detail, and a scenario data flow
diagram constructed. The scenario data flow diagrams
should then be combined to form a diagram which
contains all the elements of the previous diagrams. It
will then be possible to explain, using this one
(composite) scenario data flow diagram, any element of
the system/scenario (Figure 14c).

110 Computer Integrated Manufacturing Systems Volume 8 Number 2

Storyboard model

The storyboard model is just that. The concept
emanates from Walt Disney’s production process,

Flow of
Source or Destination of data
data

I

Store of Process which

data transforms flow of i
data i

Figure 13 Diagrammatic nomenclature

The helical approach to software design: A W § Ainger

Scenario Datafiow Diagram for
EXISTING PARY ENGWIRY

Customer

A

Sales Enquiry

Sales Di

Sales Order List &
Factory Planner Data

Person

Handling DSS
(Parcof Task 2)

ATdIWNV X3

Figure 14(a) Examplc SDFDs. Existing part cnquiry

Scenario Dataflow Diagram for

Design

NEW PART ENQUIRY Customer m
L
| | Di Sales Order List &
PSale: Sales Enquiry Factory Planner Data T Faccory Planner]
o P e n Ceil Co-ordinator DSS
(Pare of Task 2) DI2 djusted (Parof Task2) J L
rocess Routes
s Part Nos. &/ or
D2 Specifications Set 6.0
DI Machine Cell / Machine
Daw Matching System

Parts Dambase
(Task5)

[o4]

Deuiled Routes
Set / Run Times ewc

Prelimina

Alternative Part Nos.

5.0

N

Process Route,
Part Proggam (inci. data base)
& Tooi DSS (Task4)

e S

Process
Engineer

D5 & Differance Factors
X
Work Piece Data /
D7 Final Design o
N

[S

Figure 14(b) Exampic SDFDs. New part enquiry

where the principal characters and storyline are
portrayed in sketches on pieces of paper or card. As tar
as the creation of a software system s concerned, the
sketches that go to form the storyboard model should
indicate the basic outline ot the screen formats and
should focus upon the information flow lines on the
SDFD, surrounding the sources and sinks/destinations
(1.e. the square boxes) of data.

Computer Integrated Manufacturing Systems Volume 8 Number 2

Some connection should also be made to the time
element. It is best if all these sketches are placed on a
very large wall and the hierarchy of the screens
portrayed such as to represent a basic time sequence.
Various menu options can be shown as parallel tracks
on the storyboard model. This is best explained via the
case study (Figures 15 and 16). It has been found
beneficial to focus on the principal output screens and

111

The helical approach to software design: A W S Ainger

Full Scenario Data Flow Diagram Model

Customer

.0

Sales Enquiry

Sales Order List &

actory

Handling DSS
Part of Tak 2

Part Nos. & / or
D2 Specifications Set

i 30
priie] Feaure Based
< CAD DSS &

.| Factory Planner/
\Cell Co-ordinator DSS
Port of Task 2

Provisional Orders &
Confirmed Orders

4.0

anner

Cell / Machine
Matching Syscem

| Cell Scheduler DSS

Detailed Routes
Set / Run Ti

i} Sehy

(Povol Tuk24)

reliminary
esign

09

D.S' tkerm.d.;; .‘P;rt Nos.

Preliminary
Schedule

aras

‘Work Piece Data /

Differance Factors

5.0

D10

Work-To List

D7 Final Design

Process Route,
| Part Program (incl. data base) e

& Tool DSS
LImk)

for each machine

Figure 14(c) Example SDFDs

Main Menu

Sales DSS Data

=

—| Main Menu || — Main Menu |
Sales DSS Data Sales DSS Data
Sales Advisor .
Product Advisof Costing Set up
Trend Analysis

AT1dINV X3

Figure 15 Example of storyboard model

the navigation between these. This should then be
followed by the principal input screens. It is not
necessary, or even desirable, to finish one before
starting the other. The iterations between output, input
and navigation issues all assist the designers and users
alike to gain, share and jointly develop a common
mental model of the proposed system.

Interactive model (cardboard software)

It is widely recognized that software products have a
certain ‘look and feel’. What has been established up to

112 Computer Integrated Manufacturing Systems Volume 8 Number

2

this stage is not only the outline functionality of the
system, but also, through the storyboard models, the
look of the system. The interactive model or cardboard
software now starts to get a handle on the feel of the
system. Creating the cardboard software from the
storyboard model is relatively straightforward. There
are many packages that permit the painting or drawing
of screens. There are also a few packages that enable
the linking of these screens in a pseudo-realistic
manner'?, Both the painting packages and linking
packages are, nowadays, very cheap and are usable by
non-software engineers!

The helical approach to software design: A W § Ainger

1 -

m
X
F
m

Figure 16 Storyboard modcl (detail)

It has been found that the ‘look’ and the ‘feel’ of the
‘cardboard model’ of the system can be most convincing.
The model should be a realization of what is now a
common mental model. It should represent a view that
is shared by both the system’s designer/developers and
the user. However, even at this late stage, changes to
the cardboard software can be made extremely quickly
(a matter of minutes in some cases). This can represent
significant savings in the overall systems development
timescales and project finances, as any change made to
the system when the product is demonstrated (i.e. in
alpha, beta or even prototype form) are normally
extremely expensive. Using ‘cardboard software’, it is
possible for the users to scan through the system, view
expected output, input and the navigation between the
screens, and obtain an overview, a shared image of the
final system.

Case study

The Helical Project Lifecycle has been developed over
the past seven years, and has been used in many
projects. The work was first reported in an ESPRIT
meeting in Brussels during 1989® and developed further
during 1990°. The Helical approach gained ground in
1992' when it featured in the UK’s Department of
Enterprise ‘Usability Now!” campaign, and where a
representative of the ITT Group stated ‘In a period of
rapid market change, effective user involvement in the
design and implementation of our manufacturing
process has been shown to be the key to success’.
Whiting® takes it further, where he says that for the
future ‘product development is the key competitive
battleground’.

The Helical approach has been used in several pan-
European multi-million dollar projects, one of which
was BRITE Project 3302'®. This project consisted of

five partners from three countries (UK, Ttaly and
Portugal). The user site was a company that made
moulds (up to 20 tonnes) for the plastic injection
process. These moulds enable other companies to mass
produce a variety of plastic products, principally in the
automotive sector.

The project was focused into four areas. The
examples below are primarily taken from the sales
area. The aim of this part of the project was to develop
a ‘Decision support system for the salesperson’. An
example, or partial example, of each of the above-
mentioned Helical models is described. The resultant
products are planned to be released at the end of 1995.

An example of a CATWOE Model is as in Figure
17'°. Tt must be remembered that the CATWOE model
is dynamic; it changes throughout the project to reflect
current thinking. As a result, it must be up-dated and
reviewed regularly. However, it summarizes the consor-
tium’s common understanding of the project’s goals at
that moment in time. Figure 17 is one of the many
CATWOE statements that were produced in the life of
the project. It is interesting to note how these change
over time and what appears to take dominance. For
example, in the CATWOE development it was import-
ant to emphasize that ‘a system’ is not just a computer
system, but involves people as well.

In the scenario model three areas were considered.
First, it was assumed that the operating environment of
the company concerned was known by all recipients of
the scenario model. If this were not the case, a certain
amount of confusion would arise. In the case of the
Portuguese user company, three scenarios were dis-
cussed. Firstly, that of receiving orders/enquiries for
products that had been made before; secondly, receiving
orders/enquiries for products that were very similar to
products that had been made before; and thirdly,
receiving sales enquiries about completely new

Computer Integrated Manufacturing Systems Volume 8 Number 2 113

The helical approach to software design: A W S Ainger

CAWOE is an acranym which arises
from the field of Systems Theory .
Each letter in the acronym represents
an aspect of the system that should
be mentionedin a precise system
definition

1 C ~ Customer or Beneficiary

2 A ~ Actors in the System

3T ~ Transformation

4 W ~ World Image

5 O ~ Ownership of the System

6 E ~ Environmental Constraints

In addition to the CATWOE elements,
a System Definition should also refer
to the system inputs and outputs

7 Inputs

8 Outputs

CATWOE

The system is a group of people ?
undertaking business, design, planning
and manufacturing activities ,6who
process 3customer queries and orders
supported by computer -based tools, in a
way'that provides the customer with
accurate and realistic information 8 1
thus improving the company’s b

customer responsiveness in a4customer m

driven market environment .

X

Figure 17 CATWOE example

products. It was felt, initially, that these three scenarios
covered the full range of possible operating scenarios in
the company concerned. However, after further
detailed analysis (after the initial scenario data flow
diagrams were produced), it became necessary to
modify these in line with the revised needs of the users.
Figure 14 shows the results of this process.

In the modified sales decision support system, one
scenario was to consider an order on a factory by an
existing and known customer requesting an existing and
previously supplied product (Figure I4a). Another
scenario could be an unknown customer requesting a
totally new product that has to be designed from
scratch (Figure 14b). There are many other scenarios
between these two extremes.

All the examples (i.e. Figures 11, 12, 14-17) used in
this paper are taken from the same project'®.

Benefits

The benefits of adopting and using the Helical Project
Lifecycle have been substantial. The Helical approach
has been used on a number of projects, both internal to
the group and externally. The approach has been used
both nationally with the UK and internationallly on
large pan-European software projects. Progress on
projects employing the Helical approach have been
rapid and success high®'3-'6. To-date, the largest single
project in which the Helix has been used successfully
was a £5.6 million pan-European development
project’. The first product (ACiT) to result from using
the Helical approach was launched in London in
1990'*. Major companies such as BICC and ITT
Cannon have used the Helical approach, and all
Human Centred Systems Ltd’s (UK) products are now
developed using the Helical approach.

The future

What does the future hold regarding the Helical
approach? Obviously, the various forms of models and

114 Computer Integrated Manufacturing Systems Volume 8 Number 2

their applications can be improved. Lessons can be
learnt not only from the fields of applied psychology,
systems theory and structured analysis, but also from
art and design, fashion and style houses, and other such
sources. However, we believe the major change that
should come fairly quickly will be in the IT departments
that utilize the Helix. It is becoming apparent that a
new job function has to be created, that of model
maker!

Model makers have existed in the traditional engin-
eering sector for decades. For example, who makes the
cardboard model version of the block of flats?
Obviously, the bricklayers involved on the building site
would not be a first choice. However, for some reason,
when considering software models, most organizations
tend to use software people (the equivalent of brick-
layers in the block of flats!). What is required is a new
engineer: a software model maker. An engineer who is
a true hybrid; a person who understands not only the
limits and boundaries within the software engineering
field, but also someone who has a grasp of psycho-
logical aspects; the ergonomics of screen design and an
understanding of style; layout; form and function.

We are not suggesting that these new software model
makers be versed in all the details of software or any
other particular discipline, just that they have a broad
understanding of a number of engineering issues. These
people need not necessarily write the real software —
just as the real model makers do not make the real
block of flats. These new software model makers must
have experience in writing software products, but what
is more important is that they must have a firm
understanding of social and psychological issues and a
flair for art and design and, most importantly, be expert
communicators (not necessarily verbal).

In the past, when computer systems were in their
infancy, this level of specification sophistication was
not necessary. The systems could be changed and re-
written relatively quickly. However, in today’s complex
software arena the software profession is gaining

maturity, and it is now time that we adopt appropriate
and relevant procedures and practices, which are
commonplace in more traditional engineering
disciplines and learn from their experience.

Conclusion

The Helical approach to software design is a re-
assembly of pieces from old jigsaws. The pieces, when
assembled in this novel way, make an exciting new
picture for the tuture. The speed by which software
systems can now be developed 1s improving all the
time, and the accuracy by which they reflect user
requirements can now be made more certamn. The
benefits of using the Helix can be startling both in small
projects and large ones The time and financial savings
that can accrue by adopting the Helical approach can
be beneficial not only at a group level, but also at an
individual level. The biggest problems tound when
implementing the Helix have been the mental barriers
within the individuals concerned. It is almost second
nature 1o go from specitication to design and design to
prototype. What we have to do is to break down these
mental barriers. We have to think in a Helical way and
to build models. to become multi-skilled, to think
globally and to learn continually whilst we (hopefully)
earn.

The helical approach to software design. A W' S Amger

References

1 USA Department of Defence GAO (1979)

2 Ernst & Young ‘STAGES Methodology'. Ernst & Young,
London, UK (1991)

3 Whiting, R ‘Product development as a process’. Elect. Bus.. Vol
17 No 12 (1991)

4 Finkelstein, 1. “The life-cycle of engincering products - an analysis
ot concepts’. fing. Manage. J.. Vol | No 3 (1991)

5 Butler, M "Too much order can mcan chaos . Computing {1992)

6 IEE News ‘Making IT work for uscrs’ (January 1991)

7 Hamlin, M ‘Human-centred CIM’, Professional Eng. (April 1989)

8 Ainger, A 'Human-centred design of human-centred systems™
ESPRIT Conf., Brussels, Belgium (1989)

9 Ainger, A "Aspects of an experimental industrial application of
buman centred CIM (HC-CIM) systems” TEL - Colloquium
London, UK (1990)

10 Ainger, A *How human factors expertise can improve manufactur-
ing systems', Usable I'T in Manuf. Conf.. Birminghan . UK (1992)

L Ainger, A 'If only”, Electrronics and Wireless World (January 1992)

12 SEEIT Screen Linking Product. Human Centred Systems
Limited, Old Windsor, Berks SUA 2JP. UK (1993

13 Ainger, A "Munufacturing - a practical human-centred perspect-
we', Eng. Manage. J. (1991)

W ACIT Factory Loading and Cell Sequencing Software Modules.
[ESL.. Manchester. UK

15 Usability Now! The Enterprise Initiative. Department of Trade &
Industry, Scalectro Case Study (1991)

16 BRITE Project No. 3302 EEC. Brussecls (or for turther informa-
tion contact Human Centred Systems Limited. UK +44 (0)1753
833557)

17 NATO Conference ‘People and Computers’, Loughborough
University. UK {1993)

18 Schmidt, ¥ et al. Computer Integrated Production Systems and
Organsations, NATO ASI Series F. Vol 134 (1994)

19 Checkland, P Systems Thinking, Systemms Pracrice. Wiley,
Chichester (1991)

Computer Integrated Manufacturing Systems Volume 8 Number 2 115

